15.
$$y = -\frac{20}{x}$$
; $y = -\frac{20}{3}$

16.
$$y = \frac{9}{x}$$
; $y = 3$

17.
$$y = -\frac{24}{x}$$
; $y = -8$

18.
$$y = \frac{14}{r}$$
; $y = \frac{14}{3}$

19.
$$y = \frac{21}{x}$$
; $y = \frac{1}{x}$

20.
$$y = \frac{5}{x}$$
; $y = \frac{5}{x}$

21.
$$y = \frac{2}{x}$$
; $y = \frac{2}{3}$

22.
$$y = -\frac{35}{3x}$$
; $y = -\frac{35}{9}$

- **23.** The equation for direct variation was used; Because $5 = \frac{a}{8}$, a = 40. So, $y = \frac{40}{x}$.
- 24. The value of a was substituted into the direct variation equation; $y = \frac{10}{x}$

b. The number of songs decreases.

26.
$$P = \frac{154.8}{A}$$
; 2.58 lb/in.²

27.
$$A = \frac{26,000}{c}$$
; about 321 chips per wafer

28. direct variation; The points lie on a line.

- yes; The product of the number of hats and the price per hat is \$50, which is constant.
- 30. about 190.4 lb